資料內(nèi)容:
1 數(shù)據(jù)采集及預(yù)處理
由于實(shí)驗(yàn)數(shù)據(jù)來(lái)源于真實(shí)交通場(chǎng)景和不同的傳感
設(shè)備, 所以數(shù)據(jù)預(yù)處理的第一個(gè)任務(wù)是將每個(gè)傳感設(shè)
備采集的數(shù)據(jù)進(jìn)行濾波、分段處理, 第二個(gè)任務(wù)是進(jìn)
行時(shí)間戳對(duì)齊, 并按時(shí)間窗口提取具有同一標(biāo)簽的數(shù)據(jù).
1.1 數(shù)據(jù)采集
本次數(shù)據(jù)采集過(guò)程中, 汽車(chē)運(yùn)動(dòng)學(xué)數(shù)據(jù)中的速
度、加速度來(lái)自安裝在試驗(yàn)車(chē)上的 Cohda_wireless 短
程通信設(shè)備. 轉(zhuǎn)向角、轉(zhuǎn)向角加速度來(lái)自安裝在方向
盤(pán)處的轉(zhuǎn)角測(cè)試儀. 駕駛員生理數(shù)據(jù)中的腦電數(shù)據(jù)
(EEG) 和頭部運(yùn)動(dòng)數(shù)據(jù)來(lái)自腦波分析儀. 心電數(shù)據(jù)
(ECG) 來(lái)自貼片式心率測(cè)試儀. 頭在水平方向轉(zhuǎn)動(dòng)的
次數(shù)來(lái)自行車(chē)記錄儀中的行車(chē)視頻. 數(shù)據(jù)采集設(shè)備如
圖 1 所示. 圖 2 是模型訓(xùn)練數(shù)據(jù)的采集路線, 采集車(chē)輛
從長(zhǎng)安大學(xué)出發(fā)到西安城北客運(yùn)站, 全長(zhǎng) 23.8 公里. 為
了使模型訓(xùn)練和驗(yàn)證的時(shí)候更加魯棒, 我們邀請(qǐng)了不
同的駕駛員在不同的天氣、道路、行人、車(chē)輛情況下
進(jìn)行數(shù)據(jù)采集.
1.2 時(shí)間窗口選取
時(shí)間窗口是所有數(shù)據(jù)處理的時(shí)間大小依據(jù), 所以
該時(shí)間窗口的大小要能容納駕駛員換道前的各個(gè)數(shù)據(jù)
變化. 即在該時(shí)間窗口內(nèi), 車(chē)道變換前后的各個(gè)數(shù)據(jù)變
化要能被觀察到. 如圖 3 所示, 將從車(chē)輛轉(zhuǎn)向角發(fā)生巨
大變化至轉(zhuǎn)向角趨于平穩(wěn)的一個(gè)行為標(biāo)記為一個(gè)變道
行為, 并將該段時(shí)間記作一個(gè)時(shí)間窗口. 在討論該模型
的前瞻性時(shí), 采用依次縮短該時(shí)間窗口的方法. 其具體
做法是將時(shí)間窗口的結(jié)束點(diǎn)依次提前, 在不考慮預(yù)測(cè)
精確率的情況下, 時(shí)間窗口結(jié)束點(diǎn) 3 比結(jié)束點(diǎn) 2 具有
更好的前瞻性. 因此, 在模型訓(xùn)練和驗(yàn)證過(guò)程中, 采用
縮小時(shí)間窗口的同時(shí)比較準(zhǔn)確率的方法來(lái)訓(xùn)練和驗(yàn)證
模型.
在數(shù)據(jù)處理過(guò)程中, 以當(dāng)前的時(shí)間窗口大小為依
據(jù). 文章所采用的循環(huán)神經(jīng)網(wǎng)絡(luò)要求每次輸入的數(shù)據(jù)
為定長(zhǎng), 但由于時(shí)間窗口是不定長(zhǎng)的, 因此要求在每個(gè)
時(shí)間窗口內(nèi)設(shè)定一個(gè)通用的數(shù)據(jù)提取方法, 使得在不