Python知識分享網 - 專業(yè)的Python學習網站 學Python,上Python222
使用自我監(jiān)督學習的亞米分辨率冠層高度圖和用于航空和GEDI激光雷達訓練的視覺轉換器 PDF 下載
匿名網友發(fā)布于:2025-06-01 10:39:11
(侵權舉報)
(假如點擊沒反應,多刷新兩次就OK!)

使用自我監(jiān)督學習的亞米分辨率冠層高度圖和用于航空和GEDI激光雷達訓練的視覺轉換器 圖1

 

 

資料內容:

 

Highlights
Sub-meter resolution canopy height maps using self-supervised learn-
ing and a vision transformer trained on Aerial and GEDI Lidar
Jamie Tolan1, Hung-I Yang1, Ben Nosarzewski1, Guillaume Couairon2 , Huy
Vo2 , John Brandt3, Justine Spore3, Sayantan Majumdar4, Daniel Haziza2,
Janaki Vamaraju1, Theo Moutakani2, Piotr Bojanowski2, Tracy Johns1, Brian
White1, Tobias Tiecke1, Camille Couprie2

0.5 meter resolution canopy height maps at jurisdictional scale are re-
leased.

Improved performance from Self-Supervised Learning (SSL) and vision
transformers.

First use of SSL and vision transformers for canopy height estimation.

Low resolution GEDI and high resolution aerial lidar predictions are
combined.

Model generalises well to aerial imagery, even though trained with satel-
lite images.